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Abstract. We wnrider a continuum model of thin-film growth on an infinite perfect 
substrate. Multilayem grow by random nucleation of islands, at fixed rate, followed by 
lateral expansion at consfant speed. Our focus is on the evolution of the film profile in the 
regime of small thicknesses. We present results for the layer caverages, the interface width, 
and the Bragg intensity oscillations, obtained by numerical integration of the original 
Kashchiev recursion relations. Asymptotically, the model shows Kardar-Parisi-Zhang 
universality scaling. Expressions for spatial correlation functions are a150 developed. 

1. Introduction 

There has been much recent interest in irreversible models for far-from-equilibrium 
self-a5ne film growth [l-31. Typical studies introduce stochastic lattice models [4], 
although a few continuum models have also been considered [4-61. Generally, analytic 
solutions are rare even in one dimension (the substrate dimension). The primary.interest 
is in the universal asymptotic behaviour of the interface width [4] (a measure of the 
number o f  incomplete layers), w = Laf(f /L"'B),  for a,system of size L, at time f. This 
scaling holds for epitaxial films [7], of interest here. The conventional scaling function 
has the form f ( x )  = xp for x<c 1, and approaches a constant for x >> 1, thus we have 
w - L" as t + 00, and w - tP as L+ a, for large t. For deposition at non-noma1 incident 
fluxes, a generalized anisotropic scaling form forf has been developed [SI. A coarse- 
grained  description^ of models by appropriate stochastic partial differential equations 
elucidates their assignment to a few universality classes with distinct values of (Y and 
p. These exponents depend~only on a small set of local growth rules, besides the 
substrate dimensionality and the properties of the noise. We note however that often 
the short-time transient behaviour is of more experimental interest and relevance [9], 
although it is not usually addressed in the above studies. This will be the focus of the 
present work. 

The Kashchiev or polynuclear growth ( PNG) model, defined in arbitrary dimension, 
is the multilayer generalization [IO, 111 of the submonolayer version introduced 
originally by Kolmogoroff [12] and Avrami [13] (see also fohnson and Mehl [14]). 
In its simplest formulation it involves the homogeneous time-independent nucleation 
of islands at random positions on each supported layer, starting with a smooth substrate, 
with subsequent isotropic island expansion at constant speed, satisfying a no-overhang 
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condition. An island stops expanding when it contacts a neighbouring island in the 
same layer. The extension of the model to account for variable, system-specific 
nucleation and growth rates is straightforward [ll]. As noted originally [ll], the 
kinetics of a given layer, at a certain time, is unrelated to that of all layers above, but 
depends on the growth rate of the preceding layer at all earlier times. Non-trivial 
recursion relations between successive layer coverages can be developed and exploited 
in general [ll]. 

The Kashchiev model 1111 is also obtained as the strong clustering limit of certain 
multilayer cooperative filling processes on a lattice [15-161. The lattice processes 
involve competition between nucleation and growth of Eden clusters in.each layer. 
Growth is enhanced at island perimeter sites, by a factor U> 1, say, relative to growth 
at sites with no occupied neighbours. In the limit as u+w,  with suitable rescaling of 
the lattice spacing, this model reduces to that of Kashchiev. Exact analysis of this 
lattice model is only possible for the first layer and in one dimension 115,161. Similar 
models with an additional restricted solid-in-solid constraint have been considered 
[17]. They show Kardar-Parisi-Zhang [ lS ]  (KPZ) behaviour for large U where they 
reduce to the Kashchiev model. 

The Kashchiev model provides a simplified description of the kinetics of nucleation- 
mediated crystal formation on surfaces free of dislocations [ll]. It is naturally well 
suited to describe layered systems, like polymer crystals [19] and electrodeposits [20]. 
The submonolyaer version has been associated [Zl-241 with the kinetics of metastable 
domain growth, having reproduced universal growth curves and grain-size distributions 
over a wide range of characteristic parameters. One should realize that the model (of 
random irreversible nucleation of immobile islands of negligible initial size, expanding 
radially at constant speed [12,13]) is often over-simplistic in some of its assumptions. 
For instance, island dissolution and large critical radii are not uncommon and introduce 
an extra timescale [25] in the Kolmogoroff-Avrami formulation. However, many 
experimental situations in thin-film growth effectively correspond to a very small critical 
nucleus [26]. The assumption that the lateral island velocity is constant during growth 
holds only at large front curvatures [27], if at all, but variable speeds are not hard to 
incorporate in the model. Analogously, long-range correlations (e.g. associated with 
elastic forces) among islands have not been properly accounted for in any of the 
current applications of the model even in systems where nucleation is known to be 
driven by surface stress fields [23]. For the same reason, the model is not expected to 
perform well in the vicinity of critical points. 

Both analytical and numerical studies of the Kashchiev model have been reported 
in the literature 111, 19,20,28-341. They typically relate experimentally accessible 
quantities, e.g. the film growth rate, to the growth mode and the conditions of the film 
interface. All simulations confirm that a constant non-zero overall growth rate sets in 
aftera few layers form. Rangarajan [28] derived an exact expression for this constant. 
Although circular island shapes are commonly chosen, the approach is not restrictive 
of the island shape. Oldfield [29] simulated the steady-state growth of aligned squares, 
assuming electro-deposition parameters typical of the formation of mercury salts on 
mercury. He addessed the oscillatory structure of current transients (thus the film 
roughness) in terms of the nucleation and lateral growth rates, or rather a combination 
thereof (see below). Clearly, the higher the nucleation rate at fixed lateral growth 
speed, the rougher the film interface, at any given time. His results for the growth rates 
do not reveal pronounced island shape effects. Gilmer’s simulations [31] also focused 
on the asymptotic growth rate and the details of the initial transients. Kashchiev [ll] 
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allows for general kinetics of layer filling showing that closed-form solutions are 
possible for general nucleation and expansion rates. He has provided detailed exact 
expressions for these. His work focused on the average film height and the overall film 
growth rate, and provided the first clear understanding of the layer coverage recursion 
relations for the multilayer case. These we review in the next section. 

For a finite one-dimensional substrate, the steady state of the Kashchiev or PNG 
model can be analysed exactly [19,32,33]. Here the film interface width saturates at 
a value that scales non-trivially with the system size. The analysis relies on the map 
between the dynamics of the PNG model and that of the harmonic Sine-Gordon chain 
[33], whose fluctuations behave as in a gas of kinks and antikinks. Kinks and antikinks 
are created randomly in pairs, say at rate r, move in opposite directions, with uniform 
speed U, and annihilate each other when they merge. Random variables describing 
kink (n+) and antikink ( n - )  densities satisfy Jn,/Jt = r-2un+n-+uVn,, the terms on 
the right corresponding to creation, annihilation and drift of the specific kink type, 
respectively [30,32,33]. Clearly n+-  n- i s  conserved by the dynamics. A steady-state 
measure exists where J( n,)/Jt = 0 and the kink densities are uniform, hence V( n*) = 0, 
and the spatial correlations between kinks and antikinks (as well as between kinks) 
areidenticallyzero [33].Thus (n+n-)=(n+)(n-) andoneobtains r=Zu(n+)(n-).  Simple 
algebra gives for the average steady-state kink tlux, defined as (J) = u((n+)+(n-)) ,  the 
important relation (J )=[ ( (n+) - (n_) ) ’+2r /u ] ’ / ’ .  It follows that, in the film growth 
equivalent, (J) gives the rate of increase of the average interface height h, whereas 
(n+) - (n - }  corresponds to the slope of the growing interface, Vh. For r f O  and 
sufficiently small gradients, one finds Jh/Jf  - (2ru)’~’+(u3/8r)’”(Vh)’.  This implies 
that the-model belongs to the KPZ universality class [18] (which has a =+, p =f) .  Note 
that the coefficient in front of the nonlinearity is positive, indicating that the film 
growth is enhanced on tilted (stepped) substrates. This is intuitive given the preferential 
growth at kink positions. 

The outline of the remaining of this work &as follows. We review the Kashchiev 
model in the next section. Numerical integration of the monolayer coverages, from 
Kashchiev’s original recursion solutions [ll], is described in section 3, and in section 
4 we recall some common measures of film growth and roughness in terms of the layer 
coverages. .We provide results for the transient behaviour of the growing film, and a 
brief scaling analysis of the asymptotic non-epitaxial regime, at late times. The latter 
is limited by the number of integrated monolayers. The behaviour of the multilayer 
spatial correlations in analysed in section 5. We summarize our results in section, 6. 

, . ,  , 

2. The model 

Figure 1 is a schematic of the model in one dimension. One stam at f = O  with an 
infinite perfect substrate on which a multilayer film grows. Islands nucleate at random 
in layer j ,  on top of islands in layer j -  1, at average rate r,( t )  at time t, per unit time 
and ‘area.. Thereafter the islands expand laterally with speed U,(&), which depends 
on the time interval 6t since nucleation, developing into ‘bricks’ [I91 in d = 1, disks 
in d =2, etc. Here d denotes the substrate dimensionality. In general, ‘j and vj depend 
explicitly on time, but uj U,+, is necessary to avoid overhangs. Islands are immobile. 
The radial growth of an island stops when it meets with another expanding island. 
Simple dimensional analysis obtains characteristic time and length scales in the model, 
in terms of the rates r and U, namely TO= ( rud) -” ‘d+lJ  and I o =  ( ~ / r ) ” ‘ “ + ~ ’ .  
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Figure 1. Two stages of growth in the Kashchiev model in one dimension. The ticks indicate 
the positions where the islands nucleated. Two islands at the centre of the lower diagram 
have already merged. 

At some time t>O, a fraction 0, ( t )  of the substrate is covered with the deposit. 
The general form of el, due to Kolmogoroff [12] and Avrami [13], is 

1 - 6’,(t) =exp( --c 1’ 0 ds rI(s)[ Is‘ dz v , ( ~ - s ) ] ~ }  

where c is a constant reflecting the shape of the islands (c=2, T, 47r/3, for disks in 
d = 1,2,3). The above expression results from considering in general [23 J the necessary 
and su5cient condition for any point of the substrate not to be covered with an island, 
at time f: no island can be nucleated at time s <  f within a distance I: vI(z--s) dz of 
that point. Noting that the nucleation is a Poisson process, the exponential term is 
then simply the probability that such an island was not nucleated throughout the entire 
time interval, until time t. In the case when r ,  = r and U, = U  are time independent, 
one obtains 

O,(t)=l-exp[-(~)d+’] (2) 

with T = [ ( d  + l)/C]l’(d+l)TO. 
Next we present Kashchiev’s [ll] recursion relations for higher layer coverages. 

We consider only the case where 5 and vj are constant, with vj 3 v ~ + ~ .  Generalization 
is straightforward (provided, e.g. u,(t) 2 vj+,(t‘) for all t, f). Suppose an infinitesimal 
portion d0,(t’) of layerj is created at time f’. The fraction of this newly created platform 
for islands in layer j+l which is covered at time t >  t’ simply equals the fraction of 
the substrate, in the submonolayer problem at the corresponding layer+ + 1) nucleation 
and expansion rates [11], which is covered at time t -t’. Thus one has 

d0,( t’) (3) 

One might naturally expect [34] that subsequent covering of points on the platform 
d0,(f’) would be affected by its finite size. However, for time f with t ’ s  f< t, points 
in layer j within a distance (f- t’)uj of the infinitesimal platform are necessarily filled 
by expansion of the platform, at speed uj, or some other island. But the state of a 
point on top of the platform at time f can only be affected by the state of layer-j points 
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within a distance ( f - t ' )~ ,+~ from the platform (with vjjCl s vj). Thus, as regards its 
subsequent covering, the platform is efectiuely infmite. 

From ( 3 )  recursion relations between adjacent layer coverages can be built, at any 
time t > 0. Assuming, for simplicity, that T is layer independent, one has, for j 0, 

e,+l(t) = IO'dt'{ 1 -exp[ -(v)d+1]}-&7- dO-(t') 
(4) 

with O,,,(O)=O, and $ ( t )  = 1, dOo/dt= 8 ( t ) ,  the Dirac delta function. 

3. The layer coverages: numerical analysis 

The recursion relations in (4) are easy to integrate numerically, in one of several forms, 
though evaluation of higher-layer coverages rapidly becomes computationally expen- 
sive. We used the form 

d + l  t - t '  t - f' d+1 
j > o  ( 5 )  O,+,(t) =- dt'(-) 7 exp[ -(-) T ] O,(t') 

T o  

(which results from (4) after integrating once by parts, and fixing .q*l = T ) ,  to obtain 
several layer coverages in one and two dimensions, with the choice T = 2. Since T sets 
the only timescale in the model, this choice is clearly arbitrary, as long as it is finite. 
Figure 2 shows the evolution of these layer coverages in time. Note how the number 
of incomplete layers, at a given time, decreases with d and, for each d, increases as 
the film grows. A reliable numerical treatment of the asymptotic (large-t) regime 
requires evaluation of far more layers, impractical on a Silicon Graphics machine. We 
have also performed calculations (not reproduced here) using simple approximation 
schemes, as suggested by Kashchiev 1111. These basically rely on the fact that the 
exponential function that enters in ( 5 ) ,  or its derivative, are asymptotically sharply 
peaked around t'= t, for t >> T. One is then naturally inclined to adopt simplified 
expressions, like Oj+l(f)= O j ( t )  jid/dt'{exp{-[(t- t ' ) / T I d + ' } }  dt'= Olej, for j > O .  We 
find that these approximations rapidly  loose^ quality as one advances to higher layers. 

4. Measures of film growth and roughness 

In terms of the monolayer coverages, the net fraction of the surface exposed in 
layer j is the difference Nj,,(t) = O j - I ( t ) -  ej(t)>0, given, the absence of overhangs. 
Note that Z, Nj = 1. The average film height, h = k(t), or total coverage, is then simplyt 

m m 
h ( t ) =  j q . ( t ) =  O,(t) 

j=1 ,=1 

which, using (4), satisfies jo' dt' exp[ -( q)d+l] -= dh(t') 1 - exp[ -( :)""I. 
dt' (7) 

In the insets of figure 2 we illustrate the behaviour of h in time. The approach to the 
asymptotic linear regime takes less than two layers. Assuming h ( t ) -  U& as t + q  
and substituting into (7), yields in this limit U,=l/j:exp[-(u/~)~'~] du. On the 
other hand, one finds that h ( t + O ) - ( t / r ) d + l .  

t I n  general. 1. ,*I j"N,=1 .  ,*a I ( j + l ) m - j - l e , = r , > o r , , , , ,  (z')jkOj, for m 2 O .  
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t 

Arelated quantity of interest, and also directly accessible in film groytb experiments, 
is the instantaneous overall growth rate of the film [20,28-31,34], U(t) = Xja1 dO,/dc. 
From (4), it follows that U(t) satisfies 

U ( t )  = -"{exp[ dt - (~ )d+ l ] } -~ordtr  U(t')- d ( t  - t') (8) 

thus its Laplace transform, ~(s)=J;exp(-st)U(t)dt=2{U(t)}, is 
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where 

By Tauberian theorem, U(t+m)= Um=lim,,o~~(s)=(d+l)/{.rT[l/(d+l)]}, with 
r[ ] the Gamma function. This agrees with and confirms the heuristic, but more direct 
analysis above. In figure 3 we plotted layer and total growth rates, and compared the 
latter with exact asymptotic values. 

The film interface width, ~ ( t )  is related to the variance of 3. by [35] 
m m 2 

j = 1  j=0 

This quantity is shown in figure 4 using the first five layer coverages in the calculation, 
in one and two dimensions. Note the persistence of oscillations in d =2, as compared 
to the one-dimensional case, an indication that the film is rougher in the latter. Also, 
at all but small film heights, the range of width values is almost 50% larger in one 
dimension than in two. The average 'final' slope in corresponding l og (w)  versus log(r) 
plots give p = (d  = 1) = 0.33 i 0.03 and suggest P(d = 2) = 0.27 i 0.03. In spite of the 
small number of layers considered, the former value is in excellent agreement with the 
exact [U] K P Z ~ ( ~  = 1)  =$-value, and the latter is consistent with all recent numerical 
estimates [36] ,of P ( d  = 2), although centred higher than the previously conjectured 

For finite times and infinite substrates, the Nj-distribution is not necessarily 
Gaussian and can yield non-zero skewness of the interface fluctuations. The skewness 
is defined by the ratio [38] 

. [37] P ( d = 2 ) = + .  . .  

Krug ef a1 [38] estimated IS[ ~ 0 . 2 9 ,  for one-dimensional KPZ models in the asymptotic 
regime. This value is expected to be universal [38,39], its sign given by the sign of the 
coe5cient of the nonlinearity in the KPZ equation (which as argued in the introduction 
is positive for the PNC model). Our data is shown in figure 5. In spite of strong initial 
oscillations, they clearly point ot a non-zero positive asymptotic value for S, both in 
d = 1 and 2, around 0.3 in the former, and at least an order of magnitude smaller in 
the latter. 

Assuming equivalent scattering factors from substrate and film monolayers, the 
scattered amplitude at the +ti-Bragg condition is simply [40,41] 

~ ( t )  = z ( - i ) j + I ~ , ( t )  = e o ( t ) - z e , ( r ) + 2 e 2 ( t ) - ; .  . 
m 

>=I 
(13) 

so the out-of-phase Bragg intensity is IBr= A', normalized to unity for a clean substrate. 
Oscillations in IBr, roughly with the period of monolayer completion, are usually 
present at the early stages of, film growth. They will persist indefinitely for near 
layer-by-layer steady-state growth, but their amplitude decays for a growth process 
where the film interface roughens. This is the case here, as shown in figure 6.  Note 
that the minima in the Bragg oscillations do not occur exactly at half-integermonolayers, 
consistent with the fact that growth on each layer starts before the previous layer is 
completed. This is a common picture in realistic film growth models. 

One of the~most interesting features of the Kaschchiev model is its analytic 'solution' 
in any dimension, with non-trivial scaling behaviour. Potential exact analysis of its 
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_ _ _ _ _ _  0.60 - 

.... 1 

dh  
d t  0.48 
- 

de.  0.36 
- '. ... L 

I I 

o,oo 1.:. ... :. .... .", .. 
0.0 3.2 6.4 9.6 12.8 16.0 

t 

(b) , 
'; .... :. , 

0.0 3: 0 6.0 '9 .0 '~  '1 '2:'o 15.0 
I 

Figure 3. The total growth rate, dh/dt (solid curve), and the individual layer growth rates, 
dE,/dt (tiny-dashed curves, numbered consecutively according to the layer index), in ( a )  
d = I  and ( b )  d = 2 ,  as functions of time, with ~ = 2 .  The dashed horizontal segment 
indicates the exact asymptotic value of the total growth rate, ( a )  l/r[k]=l/&= 
0.564 1896.. . , and ( b )  3/(zr[+]) = 0.559 923.. . . 

asymptotics in d 3 2, a furmidable challenge in all reported models, would resolve 
several current questions, like the existence of an upper critical dimension (above 
which noise fluctuations are irrelevant and B = 0), and the exact value of p ( d  2 2) .  
This is currently under investigation. 

5. Spatial correlations for the growing surface 

The behaviour of spatial correlations in these multilayer models is also of interest. For 
the monolayer Kolmogoroff-Avrami model [12,13], the two-point correlation functions 
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Figore 4. The square of the interface width, iy', as a function of the total coverage, h, in 
monolayers. The solid line corresponds to d = 1 and the dashed line to d = 2. The 'final' 
slopes in mrresponding log(w) versus log(f) plots suggest exponent estimates, p ( d  = 1)=  
0.33r0.03. and p ( d  = 2) -027 10.03. 
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Figure 5. TIme dependence of the skewness of the distribution of exposed steps in ( a )  d = 
1 and ( b )  d =2,  with r=2.  

are known exactly 123,421, for general growth parameters and dimensionality. For 
two points in the first layer separated by a lateral vector r, the probability that both 
are uncovered at times t ,  and t,, respectively, involves the ( d +  1)-dimensional volume 
(the extra dimension corresponding to, time) of the union of two growing islands 
nucleated at points separated by r at times f ,  and r,. For general d and island shapes, 
the explicit evaluation of this volume is cumbersome. Expressions for 'spherical' islands 
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h 
Figure 6. Normalized anti-Bragg intensity as a function of total coverage, h, in monolayers. 
The solid line corresponds to d = 1 and the dashed line to d =2. 

in d = 1-3 can be found in [23] .  The monolayer n-point correlations will involve the 
n-island volume defined similarly. When r=O the 'two' islands overlap. When 111 3 
(2 t ' -  t ,  - t2)v, ,  for some time t'> t , ,  t2,  the union of volumes is simply their sum and 
the joint probability factors into single-point functions, as expected. Thus for finite 
spreading speeds of the islands, the correlations are strictly finite-ranged, at all finite 
times. The same is true in higher layers. 

The extension to multilayer two-point correlations can be done in a few more steps. 
Let's start with ejlj(r, tllt2), the probability that a point in layer ia 1 is covered with 
an island at time t , ,  given that a point in layer 1 G j S  i separated laterally by r is 
covered with an island at time t2.  The probability conditioning is redundant or trivial 
when t ,  < t2 and lrl S (t2- f l ) v j ,  since that point in layer j is automatically covered due 
to expansion of the island that covers the point in layer i, or some other island. We 
develop recursion relations for such quantities, using a simple extension of the argu- 
ments that led to (4). Suppose an infinitesimal increment dOilj(r, tilt2) is produced due 
to the creation of an infinitesimal platform around the point in layer i at time t i .  The 
fraction of this platform covered by layer i + l  at time t ,> ti (giuen that a point in 
layer 1 G j c  i separated laterally by r is covered with an island at time t2) is the same 
fraction of the substrate covered in the submonolayer problem at time tI - t i ,  at the 
rates appropriate for layer i+ 1, i.e. the conditioning does not change the fraction 
filled. Thus one obtains 

In integral form one has 

Using (15), one can construct all @ ; I j  with i >  j starting from SIl, whose expression is 
known given the joint probabilities derived by Ohta et al [23] and Sekimoto 1421. 
Relation (15) trivially recovers (4) if j is set to zero. 
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Lastly, one needs to determine all Ojli when i >  1 which involve the quantities 
Ojlj+;= O i + , ~ f ( O i / O f + l ) ,  determined from the above. As before, let dO;,,+,(r, tilt2) be an 
inEnitesima1 increment in the conditional probability Oilj+,, due to the creation of an 
infinitesimal portion in layer i. If t2> t i ,  the fraction of this infinitesimal platform 
covered at time t l>  t i  is given by the function OI1,(r, t l - t : l t z - t : ) ,  the two-point 
conditional probability function in .the submonolayer problem (evaluated with 
nucleation and expansion rates characteristic oflayer i + 1). Thus, for tz 3 t i ,  one obtains 

This yields the complete solution if ~12a f, via Oi+,li+, =j: dti e,,, d/dt~(OcIi+,). The 
conditioning is trivial, if jrl -z ( t2 - t , ) ~ , + ~ ,  and the latter equation reduces to (4), noting 
that then 0111+ O , ,  and Oili+, + 0,. The case where f 2 <  f, is more compli- 
cated, since one must also consider the regime tz< t i <  1, where dOj+,lj+,/dOili+l = O&, 
say, and O:, equals the probability that a point at the origin is filled at time t i  given 
that an island of radius (t:-f2)oj+1 was nucleated at r at time f2.  Thus O f l =  
OIl1(r*, t ,  - tilo), r* being the closest point to the origin at t i  of an island nucleated, at 
r at t z .  Here we use the equality of conditional probabilities that the origin is filled 
given a region is Elled, and that the origin is filled given the closest point to the origin 
in thatregionisfilled. Finally, Oi+lli+, =S:dti 0111 d/dti(O;l,+,)+l::dti O$ d/dti(Ojl,+,)~ 
This relation correctly recovers 0,+,li+, = 1 if lrl G (tl  - tZ)vi+,,, noting that then 0111 = 
O f ,  = 1 and 0,li+, = 1. 

Finally we comment on the analysis of height-height correlations. One starts 
with the pair probabilities Ou(r, t)[=Oilj(i, t l t )Oj( t ) ]  for sites in layers i and j, sep- 
arated laterally by r, to be covered at ,time t.. From~these, one can construct (using 
simple probability conservation) the height-height probabilities h@(r, t )  = 
Ou(r, t )  - OiClj(r, t )  - O#+,(r, t ) +  Oi+,,+,(r, t )  for these sites not to be covered by higher . 
layers at time t. One would then analyse the behaviour of the height correlation function 
[l-41 G(r, t ) o c X . ,  (i-j)*hb(r, t)-lrlzP,. for large f. In principle this.could be done 
analytically (for moderate t ) ,  but in practice simulations would be more efficient. 

6. Conclusions 

In summary, we presented a detailed analysis of the initial evolution of a model of 
nucleation-controlled multilayer growth. Layer coverages and related measures of film 
growth and roughness were obtained by numerical integration of Kashchiev’s recursion 
relations. Our results confirm scaling postulated for these models: they behave 
asymptotically (after 4-5 complete layers) as the KPZ model. We extended the work 
done for the two-point occupancy probabilities in the submonolayer Kolmogoroff- 
Avrami model to the multilayer case. Inter and intralayer probabilities are fully 
determined given the submonolayer results. 
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